Home Back

Formula For Centripetal Force In Physics

Centripetal Force Formula:

\[ F_c = \frac{m \times v^2}{r} \]

kg
m/s
m

Unit Converter ▲

Unit Converter ▼

From: To:

1. What is Centripetal Force?

Definition: Centripetal force is the force that keeps an object moving in a circular path, directed toward the center around which the object is moving.

Purpose: This force is essential for circular motion, from planets orbiting stars to cars turning corners.

2. How Does the Formula Work?

The calculator uses the formula:

\[ F_c = \frac{m \times v^2}{r} \]

Where:

Explanation: The force needed to maintain circular motion increases with mass and velocity squared, but decreases with larger radius.

3. Importance of Centripetal Force

Details: Understanding centripetal force is crucial in designing roads, roller coasters, and analyzing planetary motion in astrophysics.

4. Using the Calculator

Tips: Enter the mass in kg, velocity in m/s, and radius in m. All values must be > 0.

5. Frequently Asked Questions (FAQ)

Q1: What's the difference between centripetal and centrifugal force?
A: Centripetal is the real inward force causing circular motion, while centrifugal is the apparent outward force felt in a rotating frame.

Q2: How does velocity affect centripetal force?
A: Force increases with the square of velocity - double the speed requires four times the force.

Q3: What are some real-world examples?
A: Car turning (friction provides force), Earth's orbit (gravity provides force), washing machine spin cycle.

Q4: What happens if centripetal force disappears?
A: The object would move in a straight line (Newton's first law).

Q5: How is this related to angular velocity?
A: The formula can also be written as F = mω²r, where ω is angular velocity in radians/second.

Formula For Centripetal Force In Physics© - All Rights Reserved 2025